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Introduction - musical representation

* Main symbolic representation : the score
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* Provide information to musicians for reproducing the music as intended by composers




Introduction - musical representation

e Since the second half of the 20th century, the rise of computer science has opened
new possibilities and new scientific challenges




Introduction - musical representation

* Example of a reharmonization
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e The manipulation of scores is a difficult task

e |s done sequentially, required multiple operations and musical knowledge




Introduction - musical spaces

* Use of musical spaces structured according to music theory

R\ chord - relative

L f chord - counter

relative The Tonnetz :

Pitch classes
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e The manipulation is easy and fast

Bigo, Louis, and Moreno Andreatta. "Topological structures in computer-aided music analysis." Computational music analysis. Springer, Cham, 2016. 57-80.



Introduction - embedding spaces

* Machine learning framework

Design of structured spaces

e |n the Natural Language Processing field : word embeddings

 (Capture the semantic relationships between words

e Reflected in the geometric structure of the space.
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e Carry high level concepts of the language

comparative - superlative

* Used as input representation

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation." Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP). 2014.



Introduction - Organization

* Objectives : develop ML algorithms for learning self-structured embedding spaces
for symbolic music

Goal e Dependent on the

quality of the space

e No direct method

* Jointly improve
during training

* Proxy task required

Method

e Plan:

) First method - Adapt the NLP approach
Method [— @R(Eele11]e]g

Overview - Contributions

ll) Second method - Variational Auto-Encoders
Method [— @&y oJcE o]y

Overview - Contributions

lll) Applications

I\V/) Conclusion




I) First method - Adapt the NLP methods

Il) Second method - Variational Auto-Encoders

lll) Applications

V) Conclusion



Overview - Machine learning :

Machine learning framework

Neural networks
Artificial neuron : affine transform

Stacked in successive layers

0 €6

Model with parameters :

L=Ly,:0 =R

Loss function :

0 = wrgm.ing.g@(ﬁx,y)

Objective :

§ = To(z)

Output :

e Approximate an unknown function

y = I'(x)
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outputs

Y

Fully-connected network




Overview - Convolutional Neural Network 10

* \ery efficient in visual features recognition

Convolutional Convolutional Fullv-connected
layer 1 layer 2 Y
» e DIRE O
AN e [ OO O Cat (0.92)
— e [ O () Dog (0.08)
\ — N
Kernel k 'T' O
_____ Poo”ng _———- _).
W
e Neurons : small kernels e Convolved across the input image
. k _ a7k o .,
e Producing features maps hi; = (W5 s x)i; + b

* Pooling operation to maintain a reasonable dimensionality

e Followed by a fully-connected network for classification task

LeCun, Yann, and Yoshua Bengio. "Convolutional networks for images, speech, and time series." The handbook of brain theory and neural networks 3361.10 (1995): 1995.



Overview - Recurrent Neural Network

* Feed-forward networks do not retain past information

* Recurrent Neural Network handle temporal structures thanks to a loop

hi-1 r

Input —» Neural » Output
Network
Ot—2 Ot—1 Ot
“Unfolded” A A A
—> |—) > >
hi—o hi—1 h
> > > >»
T Lt—2 T Lt—l T Lt
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* Improvement for longer-term structures : LSTM

Elman, Jeffrey L. "Finding structure in time." Cognitive science 14.2 (1990): 179-211.
Hochreiter, Sepp, and Jirgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.



Overview - NLP method
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e No direct way to learn to structure the output space as desired

Goal

?

Method

4 Prediction

To correctly predict word
occurrences, it is necessary
to capture the global
concepts of the language

* Necessity to rely on a proxy task : the prediction

Input
context
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Embedding
vectors

Prediction
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Bengio, Yoshua, et al. "A neural probabilistic language model." The journal of machine learning research 3 (2003): 1137-1155.



Overview - Attention mechanism

13

* Different significances between words in a sentence

Some words are more important than others
2 2 20 2 2 A
Attention
weights
High
Y,
Low

* Weight an input sequence according to the relevance of each step.

* Jointly optimized with the other network parameters

e Strong improvement in the overall performances of the system

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).



Proposal - Approach description

14

Adapt the word embedding approach to musical data

Goal

Context —' Encoder: —.

Embedding
Vectors

?

Method — @RS e)d exteven Predictor

Architecture of the encoder and the predictor designed to target specificities of
musical data

Intervals, transpositions, octaves —l Spatial features

Rhythm — Complexity of the temporal relationships




Proposal - Model architecture

15

Trained to predict the current event in the embedding space

Embedding |

cleccleleloloe

R Low capacity ----------
Predictor

[ sso1304 |
E
3
&
E
_|
2

e With an Attention mechanism
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Proposal - CNN for Piano-roll

* Applied to musical data - Piano-roll frames

pitches frame 1 frame 2 kernels 1

; KEE iE\
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common activation

w
M

kernels 2
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* Core properties of chord reflected in the kernels

octaves
>




Proposal - Hierarchical Attention Mechanism L
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e Qur proposal : Hierarchical Attention Mechanism (HAM)

Linear
|

[ Layer norm }

On each features maps separately - ]ﬂ]

: Q
—> lWeight the kernels 5 Do:t-prct)_duct
attention

At all layers | Linear | '5 ﬁ ﬁ v

Linear

—> Weight the different levels of abstraction -

Vg

Modulate the fully-connected network i _]]

”I




Proposal - Prediction results 1

* 4 datasets of different complexity
JSB Chorales : Four-parts chorales by Bach Nottingham : British and American folk tunes

Piano-midi.de : Classical music played on piano MuseData : Orchestral pieces of classical music

N M
1 TP, 1
e Frame-level accuracy measure : Acc = —— ~ — + )
y M+ N ; TF,+FP,+FN, ‘= 1+FP,
JSB Chorales | Piano-midi.de | Nottingham | MuseData
[ }
BeSt model of the Models Acc. (%) Ace. (%) Ace. (%) Ace. (%)
literature RNN.RDM 3.1 58,00 5.0
RNN-Nade 32. 20.69 64.95
) Random
e (Classic and more CNN
sophisticated CNN Residual
Dense .30
_ _ AM-dp 33.f 30.17 (411
o Attention mechanisms JAM-ih 3.1 32.G8] (425

HA+ 9.1 3327 76.019
HANM . 30.28 7G.25

e Best performances -
for the complete Method Prediction
HAM model J

Boulanger-Lewandowski, Nicolas, Yoshua Bengio, and Pascal Vincent. "Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic
music generation and transcription." arXiv preprint arXiv:1206.6392 (2012).



Proposal - Dimensionality

19

e Embedding dimensionality

. SB

BN Piano-midi

B Nottingham

| MuseData

100 -
* Best trade-off compression/

amount of information 80 -
2
> B0 -
* |mpact on the prediction §
accuracy 2 40-
* 10, 30, 50 and 100 20
dimensions

* Drop in performance below 30

 No significant improvement above

e Best trade-off for 30 dimensions

Goal

Method

Prediction

v




Proposal - Structural results

e 2D visualization of the embeddings through PCA

* Root notes linked to musically-related elements

Major third

e Share common geometric properties

e Orthogonalization of the embedded data

Items embedded in

different sub planes s
Goal




Proposal - Summary

21

* Explore a method inspired by the NLP field

Goal

e Very good performance on the prediction task

e Structure weakened by the orthogonalization
Issue

Prediction

Method /
e Assumption not confirmed in our context

* Revise the fundamentals of this approach to develop a new and more effective

method
Change the proxy task g Method |— @®eluloIf=ETle]g
Increase the meaning carried Consider an entire bar as unit

by a single event to be embedded




) First method - Adapt the NLP methods

Il) Second method - Variational Auto-Encoders

lll) Applications

V) Conclusion



Overview - Variational Auto-Encoder
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e Auto-Encoder X = d(e(x)) =x latent
code

Method [— @eleyfeol=NEey x ﬁ@ e(x) @—) T

Input

* Two-term loss allowing to control the properties of the latent space

Reconstruction

-~

Force the latent space L(0 —E. .\ |logn ( | — Dy . —
(0,¢0)=E,. . np(X | z kL|9s(Z | X) | po(z)
distribution to be close to the ( d)) - 1“’{“)[ %’! : | )L s [lm( ‘ ' ” Pol ]
normal distribution reconstruction
_ Input .--- Encode - -« Latent space
* Resulting space : \
. ! O O !
smoothly organized = o ~(& N
o Q00 1
° m - 00 (
. inui i o ; o
Continuity e_lllowmg :O O O—E(:{;)E 9 J
the generation of = OO | Sampling
realistic data X Neqp(z | X)-- z ~ N (%), Z(x))

¥ o

regularisation

--Decode--~,
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ONOROXO®,

O O

O
~-pg(x | z)’

- o = o - -

\

O 0O —

Output

]
O

Kingma, Diederik P, and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).



Overview - MusicVA
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* Success of MusicVAE to learn embedding for monophonic melodies

* Two-part decoder that force 4
the system to rely on the latent (—yl —> —>|cy _ﬁ l
space
Y2 —> —> |2 |[—
5 _{ Conductor Decoder
« Divide the latent code into U RNN - RNN
non-overlapping 4
subsequences Yu—>
-
T

] ? { e Efficient input representation
- PEE t
2 3

1 4 129 - Note OFF Divide the time steps in 16th note

Vocabulary with 130 different

64 128 128 128 62 128 60 128 63 128 128 128 128 128 128|129
events

e Only for monophonic data

Roberts, Adam, et al. "A hierarchical latent vector model for learning long-term structure in music." International Conference on Machine Learning. PMLR, 2018.



Overview - Symbolic polyphonic representation =

=120

s}
A3
. - . . . \e =
* Different existing representation for polyphonic music I S
| ;4 v 4 v
Piano-roll MIDI-like NoteTuple
SFT_VFLCCITY<T2>,
Ge 000 .00 NOTE_ON<G7>, {[0, 0, 43, 36, 4, 7],
: : EETF'EV%\C%T‘T‘:;S,. [0’ 0’ 55’ 62’ ) ]1 Delay
F2 6000..00 NOTE. ON<3S, ! [0.0,67,72, 4.2 pien
E-2 0C00..00¢0 TIME Ell;lzr;cz}'z;/', [4’ 2’ 45, 36’ , ], Veloci
D2 2400..00 :8¥E_8;£<2;,-; [0, 0, 57, 62, 2, 1], elocity
A TE T3 [0, 0,69, 72,2, 1],
Temps fg‘;_EV%\C<(;l€:f:‘<72>'. [2. 1,43, 36, 1],

+ - + - + -
Easy to Very sparse Compact Very large Adaptability Many small
produce vocabulary vocabularies

A lot of repeated
Adaptability fnes Adaptability ~Unordered note
’ attributes

redundancy

Very sensitive to
errors

 Find a more effective input representation

Oore, Sageey, et al. "This time with feeling: Learning expressive musical performance." Neural Computing and Applications 32.4 (2020): 955-967.
Hawthorne, Curtis, et al. "Transformer-NADE for Piano Performances." submission, NIPS Second Workshop on Machine Learning for Creativity and Design. 2018.



Proposal - The signal-like representation

* A new representation for polyphonic music : the Signal-like
* |n similar fashion to an audio signal

* Sum of periodic function oscillating at different frequencies

Naturally contains polyphonic information Large dimensionality

Invertibility Phase effects in harmonic signal

* Construction process

Score Piano-roll  mapping Pseudo STFT
1. Compute piano-roll 3 — 60 T N
— T
2. Map pitches to pri Vi -3 —--%
. Map pitches to prime M e =T e _ £
numbers Xt == E_

v v g

3. Add a complex part to
the matrix (artificial
phase)

4. Compute the STFT-1

STFT |=>| Magnitude —J

—
—

STET ! | <=| Synthetic phase

Signal-like




Proposal - Representation benchmark

27

e Benchmark for learning embedding spaces

* Testing the compression results Goal ﬁ@

e Testing the structure of the resulting
embeddings

Method [— Qelely ok ely

e Implementation of an architecture similar to MusicVAE

e Training through the four representations
* On the JSB Chorales dataset

* Very strict musical rules

* Facilitates the evaluation of the structure from a musical point of view




Proposal - Synthetic dataset

e Synthetic dataset to analyze the structures of the embeddings in a music theory
stand point

* Music theory rules of the Bach chorales

1. Generate sequences of tonal functions

2. Expand to four voices : skeleton -

Major triads, minor triads, diminished triads and dominant
sevenths _

3. Adding non-harmonic tones : realizations _“b‘_‘_‘_t
—d—chd—J—
¢ ¢ ¢ &
—d—dcbdﬂ—
-djc—c—&-

Passing tones, neighboring tones, suspensions and
retardations

(II IVVVI)—»-« —> -

Tonal functions Skeleton Realizations




Proposal - Learning results

e Reconstruction and KL divergence results

Reconstruction

* Monophonic results as Input KL div
reference accuracy (%)
Piano-roll
Monophonic HHETO
* MIDI-like : ill-defined MIDI-like-mono

musical sequences

Piano-roll 94.1 2%10°

) . MIDI-like

* NoteTuple : low Polyphonic ——
reconstruction accuracy, oteluple
high KL div Signal-like

e Signal-like : High reconstruction accuracy, low KL div

Improve the learning stability C :
Method , ompression

Less overfitting




Proposal - Dimensionality

30

Reconstruction [%]

100

20 1

e Impact of the dimensionality

BN Pianc-roll Signal-like N\ /\
o 3 3 &

| VA | \l

Insufficient reconstruction below 256

No improvement above

High KL divergence above 256
Best trade-off for 256

KL divergence [x 10e3]

e 64, 128, 256 and 512 dimensions

B Fiano-roll

Signal-like

42

| b

Goal

Method

256

Dimensionality

>

Compression

512




Music theory analysis

31

* Distances between a skeleton and its realizations according to the number of non-
harmonic tones

1
Not even monotonic in the bad cases %)
IS
N
. ) ) T
Almost linear for the Signal-like £ /
o s — MIDI-like
< e Signal-like
il — Piano-roll
— NoteTuple
0 4
1 2 3 4 5 6 7

Number of non-harmonic tones

* Distances between consecutive skeletons (DBCS) and distances between a
skeleton and its realizations (DBSR)

Input DBSR DBCS
A realization will always be closer “musically Piano-roll | 229.04+ 36.0 | 291.7 + 20.4
speaking” to its skeleton than another MIDI-like | 445.5 4+ 169.1 | 312.8 +92.6
skeleton NoteTuple | 572.5 +146.5 | 292.8 + 89.4
Signal-like | 242.2 +34.2 | 285.5+13.5




Music theory analysis o2

* Visualization of the bars in the spaces according to their tonalities

E min
D min

@® C maj

MIDI-like NoteTuple Piano-roll Signal-like

* Unstructured spaces, no tonality separation

Goal >

e Structured space, good separation, lack of
smoothness between clusters

e Structured space, very good separation, Method |— kil

smooth transitions, good continuity




) First method - Adapt the NLP methods

Il) Second method - Variational Auto-Encoders

llIl) Applications

|V) Conclusion



Composers classitfication

34

* Train our system on the MAESTRO dataset

Classical music from the 17th to the early 20th century

 Freeze the encoder parameters and use the embedding vectors as input
representation

Pre-trained encoder

. ) Signal-like } »[
Composers classification task 5
. . . e
Train a simple RNN to classify g A
. PRt B 2N _
small excerpt of music SEEE Sy W
e Tl =
» » . » 9‘ =
L" . LL-—- > ‘
bar 1 bar 6

e Results

All composers simultaneously

Composers  Train | Test || Accuracy
Bah J08S o3 84%
Beethoven 6055 797 54%
Schubert 7428 | 1017 46%
(Chopin 6027 | 1367 46%
Liszt 5082 | 485 TT%
Total 27680 | 4219 58%

|
e e

RNN

!

Composer

One composer among the others

Composers

Accuracy

Bach
Beethoven
Schubert
Chopiu
Liszt

91 %
86%
69%
61%
89%

Hawthorne, Curtis, et al. "Enabling factorized piano music modeling and generation with the MAESTRO dataset." arXiv preprint arXiv:1810.12247 (2018).



Attribute vector arithmetic

35

* Aim to modify musical features of a given bar intentionally

e Define the attributes

C diatonic membership : Amount of note which belong to the C diatonic scale

Note density : Number of note

Average polyphony : Mean number of note played simultaneously
Average note duration : Mean of the notes duration

8th and 16t note syncopation : Syncopated notes proportion

* Compute the attributes for each training sample

* Compute the attribute vectors

Split the dataset into A [ r Y 1

quartiles according to the /\ ~ ~

attributes 1 S el - 1 Sl
\ N 4% TN L6

Compute the subtraction / = 1=0

between the top and the

bottom quartile mean

embedding vectors Attribute

— A’Uector




Attribute vector arithmetic 36

* Percentage changes on the attributes of 256 generated bars

Subtraction Addition
100%
Significant change in the 16th syncop) l
corresponding attributes o syneep 50%
Duration
Polyphony

. . Note density
With few side effects Cdiammc;l

NG ‘C\ Q‘\ .0(\ OQ
& e,b o\‘\Q P > 8
¢ \;& Q SN
C diatonic Note density
c7 c7
C6 — C6
o C5 = — » C51 ———
o L
2 c4 S — Zaud——
C3 — C3 1 -
c2
0 1 2 3 c2 o 1 2 3
7 7
C6 C6 | C6 -
£ © - = _ g 5 — g C51 ——— _t
2 ca — — — fal———=—— ——— 2 — —
c3 — al————— i — — —
Cc2 2
c2
0 1 2 3 0 1 2 3
Cc7 c7 o7 0 1 2 3
C6 1 — C6 - — —_— C6
g €51 —_— — — 2O — = = w C5
2 ca- — 2ad = —_ T £ a i —
C3 1 — ast= — B c3 e
c2 L
Q2
0 1 2 3 0 1 2 3 2 0 1 2 3
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Interpolation

e Interpolation between two points in the embedding space
Embedding space
 Embed two bars @
Pral | °
* Interpolate the coordinates between them ,"Q.’
e Generate the corresponding bars R B C%
o K A K ¥ |4 \
e - =l i ] =l _
Can serve as basis for e e e mr e e
recommendation tools ] .
v u u | | | | ] | I LN
Scal =
=
C3
Cc2
“ 2 3 2 5 6 7 8 9
Time (bars)




) First method - Adapt the NLP methods
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Overall summary

* Explore a method inspired by the NLP field which rely on the prediction task

CNN-LSTM based architecture designed to capture musical and temporal features in piano-
rolls

Greatly improve by a Hierarchical Attention Mechanism able to distinguish harmonic salience
of elements at all level of abstraction

Very good prediction accuracy score

Lack of control over the latent space properties leading to orthogonalization

Goal —

Prediction

Method /




Overall summary 10

* Define a new approach relying on the Variational Auto-Encoders

Implementation of an architecture similar to MusicVAE but for polyphonic data

Introduction of a new symbolic representation for small polyphonic excerpts inspired by the
audio signal

Conduction of an extensive benchmark against the main symbolic representation showing the
efficiency of our proposal

Goal

?

Compression

Method — /

* Applications demonstrating the potential of our space for creative or analytical tools
Composer classification tool
Attribute vector arithmetic allowing the shift of a given musical attribute in a bar

Smooth and realistic interpolations showing the benefit of our space in compositional tools




Future works

41

* Multimodal embedding framework
Symbolic, audio, perceptual information

Powerful tools : audio synthesis from the score, score transcription from the audio signal,
perceptual effect predictor and generator

* |dentify and discriminate information-carrying dimensions
Greater control on the generation and modification of embedded bars

Powerful tool : precisely assessing the compositional process of a given composer or
musical trend
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