informations

évènements
Jordi Bonada
Type
Séminaire / Conférence
Lieu de représentation
Ircam, Salle Igor-Stravinsky (Paris)
durée
01 h 10 min
date
21 novembre 2017

We recently presented a new model for singing synthesis based on a modified version of the WaveNet architecture. Instead of modeling raw waveform, we model features produced by a parametric vocoder that separates the influence of pitch and timbre. This allows conveniently modifying pitch to match any target melody, facilitates training on more modest dataset sizes, and significantly reduces training and generation times. Nonetheless, compared to modeling waveform directly, ways of effectively handling higher-dimensional outputs, multiple feature streams and regularization become more important with our approach. In this work, we extend our proposed system to include additional components for predicting F0 and phonetic timings from a musical score with lyrics. These expression-related features are learned together with timbrical features from a single set of natural songs. We compare our method to existing statistical parametric, concatenative, and neural network-based approaches using quantitative metrics as well as listening tests.


Jordi Bonada

Jordi BONADA, de l’université Pompeu Fabra de Barcelone (Music Technology Group), invité par l’équipe Analyse et synthèse des sons (STMS - CNRS/IRCAM/UPMC) à être membre du jury de thèse de Luc Ardillon, présente : "A Neural Parametric Singing Synthesizer Modeling Timbre and Expression from Natural Songs" ABSTRACT : We recently presented a new model for singing synthesis based on a modified version of the WaveNet architecture. Instead of modeling raw waveform, we model features produced by a parametric vocoder that separates the influence of pitch and timbre. This allows conveniently modifying pitch to match any target melody, facilitates training on more modest dataset sizes, and significantly reduces training and generation times. Nonetheless, compared to modeling waveform directly, ways of effectively handling higher-dimensional outputs, multiple feature streams and regularization become more important with our approach. In this work, we extend our proposed system to include additional components for predicting F0 and phonetic timings from a musical score with lyrics. These expression-related features are learned together with timbrical features from a single set of natural songs. We compare our method to existing statistical parametric, concatenative, and neural network-based approaches using quantitative metrics as well as listening tests.

intervenants


partager


Vous constatez une erreur ?

IRCAM

1, place Igor-Stravinsky
75004 Paris
+33 1 44 78 48 43

heures d'ouverture

Du lundi au vendredi de 9h30 à 19h
Fermé le samedi et le dimanche

accès en transports

Hôtel de Ville, Rambuteau, Châtelet, Les Halles

Institut de Recherche et de Coordination Acoustique/Musique

Copyright © 2022 Ircam. All rights reserved.